
Automating MSFT
Fabric Deployments

Extra info…
Originally from Mexico
Live in Norway since 2018
Azure Associate-level certifications (Developer, Data Engineer, DB
Admin & Power BI Data Analyst and Fabric)
DevOps Engineer Expert certified
Content creator and instructor
#TechTacoFriday - my blog on data engineering & automation topics

Agenda for today

“Today, we’ll explore
Fabric Catalyst’s Auto
Deployment, practical
PowerShell techniques,
and REST API best
practices.”

Inception:
Solving a
Real-World
Problem

"It all started with a workshop
I was designing for
developers to learn best
practices for working with Git-
enabled Fabric workspaces,
requiring fresh workspaces
for each group to complete
exercises.“

"Manually provisioning these
environments was
impractical & time
consuming. I needed a way to
efficiently replicate my
workshop template for
multiple groups. This
challenge sparked the idea of
creating a series of
PowerShell scripts and using
DevOps pipelines to
automate the deployment of
Fabric environments

5

Introduction to
FabricCatalyst
• Project designed to automate the deployment of Fabric

environments through PowerShell scripts that interact with the
Fabric REST API.

• Integrates into DevOps pipelines, providing a user-friendly
mechanism for modifying parameters and triggering automated
deployments.

• Offers distinct deployment methods: auto, custom & map;
each tailored to different user needs.

Fabric arch. pattern in a nutshell
Workspace_template

Worskspace_dev Workspace_uat Workspace_prod

1. Creates the workspaces and assigns admins

2. Creates the branch and git-enables the workspace when applicable

3. Creates the pipeline, assigns stages to workspaces and assigns admins

4. Deploys stages (Development > Test, Test > Prod)

Development stage Test stage Production stage

Auto Deployment Operations Workflow
Workspaces Fabric Deployment Pipeline

1. Provisioning
workspace

2. Assign
workspace

Admins (RBAC)

3. Creating
new Git branch

from existing
(If applicable)

4. Enabling Git-
integration to
workspace (If

applicable)

5. Initialize-
connection
operation (if
applicable)

6. Update-
from-git

operation (if
applicable)

8. Assign
pipeline
Admins
(RBAC)

9. Assigning
workspaces to

pipeline
stages

10. Deploying
stages on
pipeline

7. Provisioning
Fabric

Deployment
pipeline

Long running operation (LRO)

Normal Operation

For each environment
defined

Once all workspaces
had been provisioned

Long Running Operations (LRO)
• Pattern for Fabric APIs

• You will get one of two responses:
✓Operation completed, status code 201 created or 200 OK: the

operation is completed, and the result (if exists) is returned in the body.

✓Operation ongoing, status code 202 accepted: this means the
operation is ongoing, and the next steps would be to poll on the state
until the operation is complete and then to get the result (if exists).

Important! This is why you need to use

Invoke-WebRequest (1)

when working with Fabric APIs

(1) Invoke-WebRequest gives you full access to the Response object and all the details it

provides, whereas Invoke-RestMethod is just for APIs that have no special response information

Demo time!
Let’s watch Auto
Deployment in Action

The other two methods: Custom & Map
MapCustom

Offers a more flexible, Git-less approach
that allows users to specify where the
process should scan for Fabric items.

Map is designed for large-scale, complex
deployments that involve multiple
environments and dependencies.

Current
challenges with
the Fabric
Automation
(Summary)

Growing pains (e.g. Constant
changes, Lacking documentation)

Compromise between “what’s
coming” vs “what’s available”

Arrival fallacy, psychology of
anticipation

Bring-your-own (BYO) vs Terraform

Have a question?
Ask away!
Every inquiry sparks growth!

Extra: Handling Long Running Operations

Thanks for your attention! Visit my blog #TechTacoFriday

svenchio@techtacofriday.com

Project designed to
automate the deployment
of MSFT Fabric
environments through
PowerShell scripts that
interact with the Fabric
REST API powered by
DevOps pipelines

Offers distinct deployment
methods: auto, custom &
map; each tailored to different
user needs.

	Slide 1: Automating MSFT Fabric Deployments
	Slide 2: Extra info…
	Slide 3: Agenda for today
	Slide 4: Inception: Solving a Real-World Problem
	Slide 5: Introduction to FabricCatalyst
	Slide 6: Fabric arch. pattern in a nutshell
	Slide 7: Auto Deployment Operations Workflow
	Slide 8: Long Running Operations (LRO)
	Slide 9: Demo time!
	Slide 10: The other two methods: Custom & Map
	Slide 11: Current challenges with the Fabric Automation (Summary)
	Slide 12: Have a question? Ask away!
	Slide 13: Extra: Handling Long Running Operations
	Slide 14: Thanks for your attention!
	Slide 15: Project designed to automate the deployment of MSFT Fabric environments through PowerShell scripts that interact with the Fabric REST API powered by DevOps pipelines

